Part Number Hot Search : 
ZMM5231 ML4877ER OGM12864 SQ10100 HA17558B 2SJ681Q 3B502 CPH5608
Product Description
Full Text Search
 

To Download SPGN0365A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 DEC 2009
SPGN0365A/SPGP0365A-Preliminary
SPGP0365A/SPGN0365A
VER : Preliminary
( SEMIHOW POWER SWITCH )
FEATURES
Variable frequency operation Low Start-up Current(Typ.100uA ) Pulse by Pulse Current Limiting Over Current Protection Over Voltage Protection (Min. 20) Internal Thermal Shutdown Function Under Voltage Lockout Internal High Voltage Sense FET Auto-Restart Mode
Frequency Modulation for low EMI Advanced Burst-Mode Operation
APPLICATION
SMPS for STB, SVR, DVD & DVCD SMPS for Printer, Facsimile & Scanner Adaptor
SPGN0365A
SPGP0365A
DESCRIPTION
The SemiHow Power Switch product family is specially designed for an off-line SMPS with minimal external components. The SemiHow Power Switch consists of a high voltage power SenseFET and a current mode PWM IC. It has a basic platform well suited for the cost effective design in either a flyback converter
INTERNAL BLOCK DIAGRAM
SEMIHOW REV.PLIMILARY"DEC 2009
Absolute Maximum Ratings
SPGP0365A
Symbol VDSS ID VGD IDM VGS EAS VCC(MAX) VFB PD TJ TA TSTG Drain-Source Voltage Drain Current Drain Current Gate - source Voltage Drain Current Gate-Source Voltage - Pulsed
TC=25 unless otherwise specified
SPGN0365A/SPGP0365A-Preliminary
Parameter
Value 650
Units V A A V A V mJ V V W W/
- Continuous (TC = 25) - Continuous (TC = 100)
3.0 2.4 30
(Note 1)
12 30
Single Pulsed Avalanche Energy Maximum Supply voltage Analog Input Voltage Range Power Dissipation (TC = 25) - Derate above 25 Operating Junction Temperature Operating Ambient Temperature Storage Temperature Range
(Note 2)
358 20 -0.3 To VSD 75 0.6 +160 -25 to +85 -55 to +150
SPGN0365A
Symbol VDSS ID VGD IDM VGS EAS VCC(MAX) VFB PD TJ TA TSTG Drain-Source Voltage Drain Current Drain Current Gate - source Voltage Drain Current Gate-Source Voltage Single Pulsed Avalanche Energy Maximum Supply voltage Analog Input Voltage Range Power Dissipation (TC = 25) - Derate above 25 Operating Junction Temperature Operating Ambient Temperature Storage Temperature Range
(Note 2)
Parameter
Value 650
Units V A A V A V mJ V V W W/
- Continuous (TC = 25) - Continuous (TC = 100) - Pulsed
0.42 0.28 30
(Note 1)
3 30 127 20 -0.3 To VSD 1.56 0.0125 +160 -25 to +85 -55 to +150
SEMIHOW REV.PLIMILARY"DEC 2009
SPGN0365A/SPGP0365A-Preliminary
Electrical Characteristics ( SenseFet Part )
TC=25 C unless otherwise specified
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
On Characteristics
RDS(ON) Static Drain-Source On-Resistance VGS = 10 V, ID = 0.5 A -3.6 4.5
Off Characteristics
BVDSS IDSS Drain-Source Breakdown Voltage Zero Gate Voltage Drain Current VGS = 0 V, ID = 50 VDS = 650 V, VGS = 0 V VDS = 520 V, TC = 125 650 ------50 200 V
Dynamic Characteristics
Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance VDS = 25 V, VGS = 0 V, f = 1.0 MHz ---950 550 120 1230 710 155
Switching Characteristics
td(on) Tr td(off) tf Qg Qgs Qgd Turn-On Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge
(Note 4,5)
VDS = 325 V, ID = 1 A, RG = 25
--------
18 12 80 22 13 2.0 5.5
----17 ---
nC nC nC
VDS = 325V, ID = 1 A, VGS = 10 V
(Note 4,5)
Notes ; 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L=14.2mH, IAS=9.5A, VDD=50V, RG=25, Starting TJ =25C 3. ISD9.5A, di/dt200A/s, VDDBVDSS , Starting TJ =25 C 4. Pulse Test : Pulse Width 300s, Duty Cycle 2% 5. Essentially Independent of Operating Temperature
SEMIHOW REV.PLIMILARY"DEC 2009
SPGN0365A/SPGP0365A-Preliminary
Electrical Characteristics ( Control Part )
TC=25 C unless otherwise specified
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
UVLO Section
VSTART VSTOP Start Threshold Voltage Stop Threshold Voltage VFB = GND VFB = GND 14 8.4 15 9 16 9.6 V V
Oscillator Section
FOSC -DMAX Initial Accuracy Frequency Change With Temperature (Note 2) Maximum Duty Cycle -25C Ta +85C 57 -73 64 5 77 71 10 82 KHz % %
FEEDBACK Section
IFB VSD Idelay Feedback Source Current Shutdown Feedback Voltage Shutdown Delay Current Ta=25C, 0V6.5V Ta=25C, 5VVfbVSD 0.7 5.4 4 0.9 6 5 1.1 6.6 6 mA V mA
Reference Section
VREF IOVER Reference Output Voltage (Note 1) Ta=25C -25C Ta +85C Max. inductor current Peak Current Limit 4.8 -1.62 5 0.3 2.0 5.2 0.6 2.38 V mV/C A Vref/T Temperature Stability (Note 1 , 2)
Protection Section
VOVP TSD Over Voltage Protection Thermal Shutdown Temperature (Tj) (Note 1) VCC > 20V -20 140 -160 23 -V C
Protection Section
ISTART IOP Start-up Current Operating Supply Current (Control Part Only) VCC = 14V VCC < 20V --100 3 170 6 mA
Notes ; 1. These parameters, although guaranteed, are not 100% tested in production 2. These parameters, although guaranteed, are tested in EDS(water test) process
SEMIHOW REV.PLIMILARY"DEC 2009
Typical Characteristics
(SPGP0365A)
SPGN0365A/SPGP0365A-Preliminary
101
VGS 15.0 V 10.0 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom : 4.5 V Top :
ID, Drain Current [A]
100
* Notes : 1. 250us Pulse Test 2. TC = 25oC
ID, Drain Current [A]
100
101
VDS, Drain-Source Voltage [V]
VGS, Gate-Source Voltage [V]
Figure 1. On Region Characteristics
Figure 2. Transfer Characteristics
7 6 5 4 3 2 1
Note : TJ = 25oC
RDS(ON) [], Drain-Source On-Resistance
VGS = 10V
VGS = 20V
IDR, Reverse Drain Current [A]
300
0 0 1 2 3 4 5 6
ID, Drain Current [A]
VSD, Source-Drain Voltage [V]
Figure 3. On Resistance Variation vs Drain Current and Gate Voltage
1000
Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd
Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature
12
VDS = 130V
VGS, Gate-Source Voltage [V]
800
10
VDS = 325V VDS = 520V
Capacitances [pF]
600
Ciss
8
6
400
Coss Crss
* Note ; 1. VGS = 0 V 2. f = 1 MHz
4
200
2
* Note : ID = 3.0A
0 10-1
0
100 101
0
3
6
9
12
15
VDS, Drain-Source Voltage [V]
QG, Total Gate Charge [nC]
Figure 5. Capacitance Characteristics
Figure 6. Gate Charge Characteristics
SEMIHOW REV.PLIMILARY"DEC 2009
Typical Characteristics
(SPGP0365A)
(continued)
SPGN0365A/SPGP0365A-Preliminary
1.2
2.5
BVDSS, (Normalized) Drain-Source Breakdown Voltage
RDS(ON), (Normalized) Drain-Source On-Resistance
2.0
1.1
1.5
1.0
1.0
0.9
Note : 1. VGS = 0 V 2. ID = 250A
0.5
Note : 1. VGS = 10 V 2. ID = 1.5 A
0.8 -100
-50
0
50
100
o
150
200
0.0 -100
-50
0
50
100
150
200
TJ, Junction Temperature [ C]
TJ, Junction Temperature [oC]
Figure 7. Breakdown Voltage Variation vs Temperature
3.0
Operation in This Area is Limited by R DS(on)
Figure 8. On-Resistance Variation vs Temperature
101
2.5
1 ms 10 ms 100 ms
ID, Drain Current [A]
ID, Drain Current [A]
103
2.0
10
0
DC
1.5
1.0
10-1
* Notes : 1. TC = 25 oC 2. TJ = 150 oC 3. Single Pulse
0.5
10-2 100
101
102
0.0 25
50
75
100
125
150
VDS, Drain-Source Voltage [V]
TC, Case Temperature [oC]
Figure 9. Maximum Safe Operating Area
Figure 10. Maximum Drain Current vs Case Temperature
100
D=0.5
ZJC(t), Thermal Response
0.2
10-1
0.1 0.05 0.02 0.01
* Notes : 1. ZJC(t) = 1.25 oC/W Max. 2. Duty Factor, D=t1/t2 3. TJM - TC = PDM * ZJC(t)
PDM
single pulse
10-2
t1
10-3 10-2 10-1
t2
100 101
10-5
10-4
t1, Square Wave Pulse Duration [sec]
Figure 11. Transient Thermal Response Curve
SEMIHOW REV.PLIMILARY"DEC 2009
Typical Characteristics
(SPGN0365A)
SPGN0365A/SPGP0365A-Preliminary
101
VGS 15.0 V 10.0 V 8.0 V 7.0 V 6.5 V 6.0 V Bottom : 5.5 V Top :
ID, Drain Current [A]
100
* Notes : 1. 250us Pulse Test 2. TC = 25oC
100
101
ID, Drain Current [A]
VDS, Drain-Source Voltage [V]
VGS, Gate-Source Voltage [V]
Figure 1. On Region Characteristics
Figure 2. Transfer Characteristics
IDR , Reverse Drain Current [A]
101
RDS(ON)[], Drain-Source On-Resistance
100 150oC 25oC
* Note : 1. VGS = 0V 2. 250s Pulse Test
10-1 0.2
ID, Drain Current [A]
0.4
0.6
0.8
1.0
1.2
1.4
VSD , Source-Drain Voltage [V]
Figure 3. On Resistance Variation vs Drain Current and Gate Voltage
1000
Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd
Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature
12
VDS = 130V
VGS, Gate-Source Voltage [V]
800
10
VDS = 325V VDS = 520V
Capacitances [pF]
600
Ciss
8
6
400
Coss Crss
* Note ; 1. VGS = 0 V 2. f = 1 MHz
4
200
2
* Note : ID = 3.0A
0 10-1
10
0
10
1
0 0 3 6 9 12 15
VDS, Drain-Source Voltage [V]
QG, Total Gate Charge [nC]
Figure 5. Capacitance Characteristics
Figure 6. Gate Charge Characteristics
SEMIHOW REV.PLIMILARY"DEC 2009
Typical Characteristics
(SPGN0365A)
(continued)
SPGN0365A/SPGP0365A-Preliminary
1.2
2.5
BVDSS, (Normalized) Drain-Source Breakdown Voltage
RDS(ON), (Normalized) Drain-Source On-Resistance
2.0
1.1
1.5
1.0
1.0
0.9
Note : 1. VGS = 0 V 2. ID = 250A
0.5
Note : 1. VGS = 10 V 2. ID = 1.5 A
0.8 -100
-50
0
50
100
150
200
0.0 -100
-50
0
50
100
150
200
TJ, Junction Temperature [oC]
TJ, Junction Temperature [oC]
Figure 7. Breakdown Voltage Variation vs Temperature
0.5
Figure 8. On-Resistance Variation vs Temperature
0.4
ID, Drain Current [A]
ID, Drain Current [A]
0.3
0.2
0.1
0.0 25
50
75
100
125
150
VDS, Drain-Source Voltage [V]
TC, Case Temperature [oC]
Figure 9. Maximum Safe Operating Area
Figure 10. Maximum Drain Current vs Case Temperature
102
D=0.5
ZJC(t), Thermal Response
0.2
101
0.1 0.05 0.02 0.01 single pulse
* Notes : 1. ZJC(t) = 80 oC/W Max. 2. Duty Factor, D=t1/t2 3. TJM - TC = PDM * ZJC(t)
100
PDM t1
10-3 10-2 10-1
10-1 10-5
t2
100 101
10-4
t1, Square Wave Pulse Duration [sec]
Figure 11. Transient Thermal Response Curve
SEMIHOW REV.PLIMILARY"DEC 2009
Package Dimension
SPGN0365A/SPGP0365A-Preliminary
SEMIHOW REV.PLIMILARY"DEC 2009
SPGN0365A/SPGP0365A-Preliminary
SEMIHOW REV.PLIMILARY"DEC 2009


▲Up To Search▲   

 
Price & Availability of SPGN0365A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X